
Smart contract security

audit report



Audit Number: 202107021148

Report Query Name: iLAVA&Airdrop

Smart Contract Name Smart Contract Address Smart Contract Address Link

iLAVAToken 0x924D79e9Ea369eb25491127d

aA9d42200f7c1aD0

https://bscscan.com/address/0x924D79e

9Ea369eb25491127daA9d42200f7c1aD

0#code

Airdrop 0xCAb6959eC8A55b57fD7D06

71042364BEe1f7Ea6C

https://bscscan.com/address/0xCAb6959

eC8A55b57fD7D0671042364BEe1f7Ea

6C#code

Start Date: 2021.06.24

Completion Date: 2021.07.02

Overall Result: Pass

Audit Team: Beosin (Chengdu LianAn) Technology Co. Ltd.

Audit Categories and Results:

No. Categories Subitems Results

1 Coding Conventions

Compiler Version Security Pass

Deprecated Items Pass

Redundant Code Pass

SafeMath Features Pass

require/assert Usage Pass

Gas Consumption Pass

Visibility Specifiers Pass

Fallback Usage Pass

2 General Vulnerability

Integer Overflow/Underflow Pass

Reentrancy Pass

Pseudo-random Number Generator

(PRNG)
Pass

Transaction-Ordering Dependence Pass

DoS (Denial of Service) Pass

Access Control of Owner Pass



Low-level Function (call/delegatecall)

Security
Pass

Returned Value Security Pass

tx.origin Usage Pass

Replay Attack Pass

Overriding Variables Pass

3 Business Security
Business Logics Pass

Business Implementations Pass

Disclaimer: This report is made in response to the project code. No description, expression or

wording in this report shall be construed as an endorsement, affirmation or confirmation of the

project. This audit is only applied to the type of auditing specified in this report and the scope of

given in the results table. Other unknown security vulnerabilities are beyond auditing responsibility.

Beosin (Chengdu LianAn) Technology only issues this report based on the attacks or vulnerabilities

that already existed or occurred before the issuance of this report. For the emergence of new attacks

or vulnerabilities that exist or occur in the future, Beosin (Chengdu LianAn) Technology lacks the

capability to judge its possible impact on the security status of smart contracts, thus taking no

responsibility for them. The security audit analysis and other contents of this report are based solely

on the documents and materials that the contract provider has provided to Beosin (Chengdu LianAn)

Technology before the issuance of this report, and the contract provider warrants that there are no

missing, tampered, deleted; if the documents and materials provided by the contract provider are

missing, tampered, deleted, concealed or reflected in a situation that is inconsistent with the actual

situation, or if the documents and materials provided are changed after the issuance of this report,

Beosin (Chengdu LianAn) Technology assumes no responsibility for the resulting loss or adverse

effects. The audit report issued by Beosin (Chengdu LianAn) Technology is based on the documents

and materials provided by the contract provider, and relies on the technology currently possessed by

Beosin (Chengdu LianAn). Due to the technical limitations of any organization, this report

conducted by Beosin (Chengdu LianAn) still has the possibility that the entire risk cannot be

completely detected. Beosin (Chengdu LianAn) disclaims any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin (Chengdu LianAn).



Audit Results Explained:
Beosin (Chengdu LianAn) Technology has used several methods including Formal Verification, Static

Analysis, Typical Case Testing and Manual Review to audit three major aspects of smart contracts project

iLAVA&Airdrop, including Coding Standards, Security, and Business Logic. The iLAVA&Airdrop project

passed all audit items. The overall result is Pass. The smart contract is able to function properly.

Audit Contents:
1. Coding Conventions

Check the code style that does not conform to Solidity code style.

1.1 Compiler Version Security

 Description: Check whether the code implementation of current contract contains the exposed

solidity compiler bug.

 Result: Pass

1.2 Deprecated Items

 Description: Check whether the current contract has the deprecated items.

 Result: Pass

1.3 Redundant Code

 Description: Check whether the contract code has redundant codes.

 Result: Pass

1.4 SafeMath Features

 Description: Check whether the SafeMath has been used. Or prevents the integer overflow/underflow

in mathematical operation.

 Result: Pass

1.5 require/assert Usage

 Description: Check the use reasonability of 'require' and 'assert' in the contract.

 Result: Pass

1.6 Gas Consumption

 Description: Check whether the gas consumption exceeds the block gas limitation.

 Result: Pass

1.7 Visibility Specifiers

 Description: Check whether the visibility conforms to design requirement.

 Result: Pass

1.8 Fallback Usage

 Description: Check whether the Fallback function has been used correctly in the current contract.

 Result: Pass

2. General Vulnerability



Check whether the general vulnerabilities exist in the contract.

2.1 Integer Overflow/Underflow

 Description: Check whether there is an integer overflow/underflow in the contract and the calculation

result is abnormal.

 Result: Pass

2.2 Reentrancy

 Description: An issue when code can call back into your contract and change state, such as

withdrawing BNB.

 Result: Pass

2.3 Pseudo-random Number Generator (PRNG)

 Description: Whether the results of random numbers can be predicted.

 Result: Pass

2.4 Transaction-Ordering Dependence

 Description: Whether the final state of the contract depends on the order of the transactions.

 Result: Pass

2.5 DoS (Denial of Service)

 Description: Whether exist DoS attack in the contract which is vulnerable because of unexpected

reason.

 Result: Pass

2.6 Access Control of Owner

 Description: Whether the owner has excessive permissions, such as malicious issue, modifying the

balance of others.

 Result: Pass

2.7 Low-level Function (call/delegatecall) Security

 Description: Check whether the usage of low-level functions like call/delegatecall have

vulnerabilities.

 Result: Pass

2.8 Returned Value Security

 Description: Check whether the function checks the return value and responds to it accordingly.

 Result: Pass

2.9 tx.origin Usage

 Description: Check the use secure risk of 'tx.origin' in the contract.

 Result: Pass

2.10 Replay Attack

 Description: Check whether the implement possibility of Replay Attack exists in the contract.

 Result: Pass

2.11 Overriding Variables



 Description: Check whether the variables have been overridden and lead to wrong code execution.

 Result: Pass

3. Business Security

Check whether the business is secure.

3.1 Business analysis of Contract iLAVAToken

(1) Basic Token Information

Token name iLAVA Membership Token

Token symbol iLAVA

decimals 18

totalSupply The initial supply is 0

Token type BEP-20

Table 1 Basic Token Information

(2) BEP-20 Token Standard Functions

 Description: The token contract implements a token which conforms to the BEP-20 Standards. It

should be noted that the user can directly call the approve function to set the approval value for the

specified address, but in order to avoid multiple authorizations, it is recommended that the user resets the

authorization value to 0 when calling this function to change the authorization value. Token transfer

related functions are only available when the related status is true.



Figure 1 source code of BEP-20 functions

Note: The total supply of tokens is calculated by the formula, and the relevant parameters are modified and

not checked before updating, which may result in a subtractive overflow in the calculation, e.g.

_TOTAL_BLOCK_REWARD_ may be smaller than the curDistribution that increases over time(as figure 2,

3 below). and, the owner of the contract can set _LAVA_RATIO_ causing the user's balance display to

change.

Figure 2 source code of totalSupply

Figure 3 error about totalSupply

Figure 4 source code of _transfer

 Related functions: name, symbol, decimals, totalSupply, balanceOf, allowance, transfer,

transferFrom, approve

 Safety recommendation: It is suggested to modify the calculation formula.

 Repair result: Fixed. The getLatestAlpha function has been modified so that when

_TOTAL_BLOCK_REWARD is not greater than _TOTAL_BLOCK_DISTRIBUTION_, the value of

alpha will no longer change and the total amount of tokens and the user's balance will not change and no

error will occur.



Figure 5 source code of getLatestAlpha (new)

 Result: Pass

(3) mint function

 Description: The contract implements the mint function for user participation in staking mining

(requires pre-authorization of this contract). The first call to this function will carry out the registration

of the user address, the superior address cannot be 0 and the caller itself, and the staking amount needs to

be greater than 0; the internal function _updateAlpha will be called before the collateral to update the

relevant data, and _mint will be called after the collateral to update the relevant data of superior address.

If the airdropController address is not 0, the deposit function in the airdrop contract will be executed to

update the airdrop reward related parameters.



Figure 6 source code of mint

 Related functions: mint, transferFrom, deposit

 Result: Pass

(4) Ownership

 Description: The contract implements transferOwnership and claimOwnership functions to manage

the contract's ownership. transferOwnership is used to set the newOwner address and can only be called

by the current owner of the contract; The claimOwnership function can be called only by the current

newOwner to receive the ownership and reset the newOwner address to 0.

Figure 7 source code of transferOwnership and claimOwnership



 Related functions: transferOwnership, claimOwnership

 Result: Pass

(5) Initialize owner

 Description: The contract implements the initOwner function to initialize the owner after the contract

is deployed and can only be called once. It is recommended to call the contract immediately after it is

deployed.

Figure 8 source code of initOwner

 Related functions: initOwner

 Result: Pass

(6) Donate

 Description: The contract implements the donate function for users to donate tokens to the contract,

which will update the value of alpha.

Figure 9 source code of donate

 Related functions: donate

 Result: Pass

(7) Redeem

 Description: The contract implements the redeem function for the user to withdraw the pledged Lava

tokens. Before the withdrawal, the internal function _updateAlpha is called to update the relevant data,

determine whether the user is withdrawing all, call the internal function _redeem to update the

information about the superior address. Then calculate the actual withdrawal amount, whether

destruction and transaction fees are incurred, and make the relevant transfer. If the user withdraws all,

the user's identity will be cancelled. If the airdropController address is not 0, the withdraw function in

the airdrop contract will be executed to update the airdrop reward related parameters.



Figure 10 source code of redeem

 Related functions: redeem, withdraw

 Result: Pass



(8) Pre-deposit

 Description: The contract implements a preDepositedBlockReward for users to send Lava tokens as

reward, this part of Lava tokens will not enter into iLAVA related calculations and cannot be withdrawn.

Figure 11 source code of preDepositedBlockReward

 Related functions: preDepositedBlockReward

 Result: Pass

(9) Contract parameter setting functions

 Description: The contract implements the following functions that only the contract owner can call:

The setAirdropController function is used to set the address of the airdropController contract;

setCantransfer to set whether iLAVA transfers are allowed; changePerReward to change

_LAVA_PER_BLOCK_; updateLAVAFeeBurnRatio to change the rate of the destruction fee.

updateLAVAFeeBurnAddress for setting the address to receive tokens when they are destroyed;

updateGovernance for setting _DOOD_GOV_; updateSuperiorRatio for setting the rate of reward for

superior addresses; updateFeeRatio for setting the rate of transaction fees; emergencyWithdraw is used

to withdraw all Lava tokens from the contract to the owner's address. Note: The owner can extract all the

Lava tokens in the contract by calling the emergencyWithdraw function, which may affect subsequent

users calling redeem to redeem their Lava tokens. And when modifying the relevant parameters without

judging whether the parameters are appropriate, the modification may lead to errors in the relevant

calculation.



Figure 12 source code of Ownable functions

 Related functions: setAirdropController, setCantransfer, changePerReward,

updateLAVAFeeBurnRatio, updateLAVAFeeBurnAddress, updateGovernance, updateSuperiorRatio,

updateFeeRatio, emergencyWithdraw

 Safety recommendation: The emergencyWithdraw function has excessive owner privileges and can

extract Lava tokens pledged by the user, so it is recommended to remove it. The updateFeeRatio has

excessive owner privileges and can set the fee rate arbitrarily and the fee receiving address can be set

freely by the owner. It is recommended to add a limit to the fee rate to prevent malicious tokens from

being sent to a specific address after the private key is lost.

 Repair result: Deleted and increased maximum transaction fee rate (20%).



Figure 13 source code of owner functions(new)

 Result: Pass

(10) Related parameter query function

 Description: The contract implements getLatestAlpha function to query the latest alpha value;

availableBalanceOf function to query the available balance of the specified address; lavaBalanceOf

function to calculate the number of Lava tokens pledged to the contract from the specified address;

getWithdrawResult function to calculate the actual withdrawal amount based on the input amount;

getLAVAWithdrawFeeRatio function to query the fee ratio of the Lava tokens withdrawn from the

specified address; getSuperior function to query the superior address; getWithdrawResult function is

used to calculate the actual number of tokens withdrawn based on the amount entered;

getLAVAWithdrawFeeRatio function is used to query the fee rate for withdrawing Lava tokens;

getSuperior function is used to query the superior address of the specified address; The

getUserStakingPower function is used to query the collateral power of the specified address.



Figure 14 source code of query functions

 Related functions: getLatestAlpha, availableBalanceOf, lavaBalanceOf, getWithdrawResult,

getLAVAWithdrawFeeRatio, getSuperior, getUserStakingPower

 Result: Pass

3.2 Business analysis of Contract Token Airdrop

iLAVA's collateral arithmetic varies according to its holdings. iLAVA token species only mint and redeem

functions update the user airdrop reward calculations in the Airdrop contract. If the iLAVA token is opened

for transfer, the receiving address can update the data related to the airdrop reward through functions such as

syncIlava to get the airdrop reward; however, the data related to the airdrop reward in Airdrop for the

transferring address will not be updated and can continue to maintain the same yield as before the transfer.



(i.e. the iLAVA token holdings decrease while the reward remains unchanged) The project owner declares

that iLAVA transfers will not be activated and that if they are, the relevant airdrop contract will be voided.

(1) add function

 Description: The contract implements the add function for the contract's owner to add new airdrop

tokens and set airdrop reward related parameters. Note: Adding duplicate airdrop tokens will cause the

reward to be calculated incorrectly, so administrators should be careful to prevent duplicate additions.

Figure 15 source code of add function

 Safety recommendation: It is recommended to add a finishBlock greater than the current time to

prevent the reward from being calculated incorrectly.

 Repair result: Fixed

Figure 16 source code of add function(new)

 Related functions: add

 Result: Pass

(2) set function

 Description: The contract implements the set function for the owner of the contract to modify the

parameters related to the airdrop token rewards for the specified id, optionally executing the updatePool

function to update the rewards related data before the modification.



Figure 17 source code of set function

 Safety recommendation: It is recommended to add a finishBlock greater than the current time to

prevent the reward from being calculated incorrectly.

 Repair result: Fixed

Figure 18 source code of set function(new)

 Related functions: set, updatePool

 Result: Pass

(3) updatePool function

 Description: The contract implements updatePool function to update the data related to the airdrop

token rewards for the specified id.



Figure 19 source code of updatePool function

 Related functions: updatePool, getMultiplier

 Result: Pass

(4) deposit function

 Description: The contract implements the deposit function to update all the user's drop reward related

data (increasing the user's calculation), by calling the internal function _deposit, and the updatePool is

executed to update the airdrop token data before increasing. If the user's calculated amount is not 0, the

previous airdrop rewards are calculated and sent. Only iLAVA token contract addresses can be called.

Figure 20 source code of deposit function

 Related functions: deposit, updatePool, safeAirdropTransfer

 Result: Pass

(5) withdraw function

 Description: The contract implements the withdraw function to update all the user's airdrop reward

data (reducing the amount of calculations for the user), before reducing the updatePool to update the



airdrop token data. If the user's calculated amount is not 0, the previous airdrop rewards are calculated

and sent. Only iLAVA token contract addresses can be called.

Figure 21 source code of withdraw function

 Related functions: withdraw, updatePool, safeAirdropTransfer

 Result: Pass

(6) sync functions

 Description: The contract implements the syncIlava function for the user to update the reward-related

data for their specified airdrop tokens, calling the internal function _deposit to update when the user's

iLAVA collateral arithmetic exceeds the amount of calculations for the specified airdrop tokens.

synctIlavaAll function for the user to update the reward-related data for all their airdrop tokens,

traversing all airdrop tokens and updating only iLAVA collateral arithmetic exceeds the computed

amount of the corresponding airdrop token.

Figure 22 source code of sync functions

 Related functions: syncIlava, synctIlavaAll, getUserStakingPower

 Result: Pass

(7) harvest functions



 Description: The contract implements the harvest function for the user to receive the airdrop reward

for the specified airdrop token, implemented by calling the internal function _deposit. The harvestAll

function is used for the user to receive the airdrop reward for all airdrop tokens.

Figure 23 source code of harvest functions

 Related functions: harvest, harvestAll

 Result: Pass



4. Conclusion

Beosin(ChengduLianAn) conducted a detailed audit on the design and code implementation of the smart

contracts project iLAVA&Airdrop. The problems found by the audit team during the audit process have been

notified to the project party and reached an agreement on the repair results, the overall audit result of the

iLAVA&Airdrop project's smart contract is Pass.



Official Website

https://lianantech.com

E-mail

vaas@lianantech.com

Twitter

https://twitter.com/Beosin_com

http://lianantech.com

	Audit Categories and Results:
	Audit Results Explained:
	Audit Contents:
	1.Coding Conventions
	2.General Vulnerability
	3.Business Security
	4.Conclusion

