
Smart contract security
audit report



Audit Number: 202109061830

Report Inquiry Name: LAVASWAP

Smart Contract Name:

MasterChef

Smart Contract Address:

0x155291E78823C53CA6995d114B5FfaCc42dd6c2c

Smart Contract Address Link:

https://bscscan.com/address/0x155291E78823C53CA6995d114B5FfaCc42dd6c2c#code

Start Date: 2021.08.30

Completion Date: 2021.09.06

Overall Result: Pass

Audit Team: Beosin (Chengdu LianAn) Technology Co. Ltd.

Audit Categories and Results:

No. Categories Subitems Results

1 Coding Conventions

Compiler Version Security Pass

Deprecated Items Pass

Redundant Code Pass

SafeMath Features Pass

require/assert Usage Pass

Gas Consumption Pass

Visibility Specifiers Pass

Fallback Usage Pass

2 General Vulnerability

Integer Overflow/Underflow Pass

Reentrancy Pass
Pseudo-random Number Generator
(PRNG) Pass



Transaction-Ordering Dependence Pass

DoS (Denial of Service) Pass

Access Control of Owner Pass

Low-level Function (call/delegatecall)
Security Pass

Returned Value Security Pass

tx.origin Usage Pass

Replay Attack Pass

Overriding Variables Pass

3 Business Security
Business Logics Pass

Business Implementations Pass

Note: Audit results and suggestions in code comments

Disclaimer: This audit is only applied to the type of auditing specified in this report and the scope of
given in the results table. Other unknown security vulnerabilities are beyond auditing responsibility.
Beosin (Chengdu LianAn) Technology only issues this report based on the attacks or vulnerabilities
that already existed or occurred before the issuance of this report. For the emergence of new attacks
or vulnerabilities that exist or occur in the future, Beosin (Chengdu LianAn) Technology lacks the
capability to judge its possible impact on the security status of smart contracts, thus taking no
responsibility for them. The security audit analysis and other contents of this report are based solely
on the documents and materials that the contract provider has provided to Beosin (Chengdu LianAn)
Technology before the issuance of this report, and the contract provider warrants that there are no
missing, tampered, deleted; if the documents and materials provided by the contract provider are
missing, tampered, deleted, concealed or reflected in a situation that is inconsistent with the actual
situation, or if the documents and materials provided are changed after the issuance of this report,
Beosin (Chengdu LianAn) Technology assumes no responsibility for the resulting loss or adverse
effects. The audit report issued by Beosin (Chengdu LianAn) Technology is based on the documents
and materials provided by the contract provider, and relies on the technology currently possessed by
Beosin (Chengdu LianAn). Due to the technical limitations of any organization, this report
conducted by Beosin (Chengdu LianAn) still has the possibility that the entire risk cannot be
completely detected. Beosin (Chengdu LianAn) disclaims any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin (Chengdu LianAn).

Audit Results Explained:
Beosin (Chengdu LianAn) Technology has used several methods including Formal Verification, Static

Analysis, Typical Case Testing and Manual Review to audit three major aspects of smart contracts

LAVASWAP projects, including Coding Standards, Security, and Business Logic. The LAVASWAP

contracts projects passed all audit items. The overall result is Pass. The smart contract is able to

function properly.



1. Coding Conventions

Check the code style that does not conform to Solidity code style.

1.1 Compiler Version Security

 Description: Check whether the code implementation of current contract contains the exposed

solidity compiler bug.

 Result: Pass

1.2 Deprecated Items

 Description: Check whether the current contract has the deprecated items.

 Result: Pass

1.3 Redundant Code

 Description: Check whether the contract code has redundant codes.

 Result: Pass

1.4 SafeMath Features

 Description: Check whether the SafeMath has been used. Or prevents the integer overflow/underflow

in mathematical operation.

 Result: Pass

1.5 require/assert Usage

 Description: Check the use reasonability of 'require' and 'assert' in the contract.

 Result: Pass

1.6 Gas Consumption

 Description: Check whether the gas consumption exceeds the block gas limitation.

 Result: Pass

1.7 Visibility Specifiers

 Description: Check whether the visibility conforms to design requirement.

 Result: Pass

1.8 Fallback Usage

 Description: Check whether the Fallback function has been used correctly in the current contract.

 Result: Pass

2. General Vulnerability

Check whether the general vulnerabilities exist in the contract.

2.1 Integer Overflow/Underflow

 Description: Check whether there is an integer overflow/underflow in the contract and the calculation

result is abnormal.

 Result: Pass



2.2 Reentrancy

 Description: An issue when code can call back into your contract and change state, such as

withdrawing BNB.

 Result: Pass

2.3 Pseudo-random Number Generator (PRNG)

 Description: Whether the results of random numbers can be predicted.

 Result: Pass

2.4 Transaction-Ordering Dependence

 Description: Whether the final state of the contract depends on the order of the transactions.

 Result: Pass

2.5 DoS (Denial of Service)

 Description: Whether exist DoS attack in the contract which is vulnerable because of unexpected

reason.

 Result: Pass

2.6 Access Control of Owner

 Description: Whether the owner has excessive permissions, such as malicious issue, modifying the

balance of others.

 Result: Pass

2.7 Low-level Function (call/delegatecall) Security

 Description: Check whether the usage of low-level functions like call/delegatecall have

vulnerabilities.

 Result: Pass

2.8 Returned Value Security

 Description: Check whether the function checks the return value and responds to it accordingly.

 Result: Pass

2.9 tx.origin Usage

 Description: Check the use secure risk of 'tx.origin' in the contract. In this project, the contract.

 Result: Pass

2.10 Replay Attack

 Description: Check whether the implement possibility of Replay Attack exists in the contract.

 Result: Pass

2.11 Overriding Variables

 Description: Check whether the variables have been overridden and lead to wrong code execution.

 Result: Pass

3. Business Security



3.1 add function

 Description: As shown in the figure below, the contract implements the add function to add a pool,

and the contract owner can call this function to add a pool for users to LP and obtain rewards. When

calling add to add a pool, lastRewardBlock and totalAllocPoint will be updated, and pool related

information will be stored. Please do not add the same LP tokens, this will cause the reward to be messed.

Figure 1 source code of add function

 Related functions: massUpdatePools, add

 Audit Recommendations: The MasterChef type stake pool was designed at a time when there were no
deflationary tokens, so the developers did not consider the impact that such tokens could have. Some
project owners used the old MasterChef tokens and added deflationary tokens or rewards as stake tokens
when developing the code, which led to various malicious attacks or anomalies. As of now, there are two
types of problems with the MasterChef type stake pool: first, there is no special handling of inflation-
deflation tokens, and the actual number of tokens transferred to the contract is not checked to be the
same as the number filled in when the function is called; second, reward tokens are added as stake tokens,
resulting in anomalies in the reward calculation. The root cause of both types of problems still lies in the
fact that the balanceOf function is used to obtain the amount of stake when calculating the reward. It is
recommended that the project owner use a separate variable as the record of stake quantity when
developing the code of MasterChef type stake pool, and then use this variable to get the stake token
quantity when calculating the reward, instead of using the balanceOf function.

 Result: Pass

3.2 set function

 Description: As shown in the figure below, the contract implements the set function to set the reward

distribution ratio of the pool. The contract owner can call this function to set the reward distribution ratio

of the pool. The modification of the pool reward distribution ratio will affect the lava reward when the

user withdraws the LP tokens.



Figure 2 source code of set function

 Related functions: set, massUpdatePools

 Audit Recommendations: It is recommended to use governance contracts to manage owner
permissions.

 Result: Pass

3.3 updateSushiPerBlock function

 Description: As shown in the figure below, the contract implements the updateSushiPerBlock

function to set the reward for each block, which can only be called through the owner.

Figure 3 source code of updateSushiPerBlock function

 Related functions: updateSushiPerBlock, massUpdatePools

 Result: Pass

3.4 deposit function

 Description: As shown in the figure below, the contract implements the deposit function for users to

deposit LP tokens. The user pre-authorizes the contract address and calls this function to LP tokens.

When the deposit function deposits tokens, if the user's balance stored in the pool is greater than zero,

the reward will be calculated and sent to the user's address. (Note that if the lava token balance in the

contract is less than the reward value, only remaining the lava tokens in the contract will be sent to the

user address) At the same time, the LP token will be sent to the pool, And the user's amount and

rewardDebt will be updated.



Figure 4 source code of deposit function

Figure 5 source code of safeLavaTransfer function

 Related functions: deposit, safeLavaTransfer, updatePool, safeTransferFrom, transfer, balanceOf

 Result: Pass

3.5 withdraw function

 Description: As shown in the figure below, the contract implements the withdraw function for users

to withdraw LP tokens and lava rewards. Users can call this function to withdraw a specified number of

LP tokens and lava rewards from the specified pool (requires the specified pool to exist and the number

of LP tokens is greater than or equal to Withdrawal quantity). When users withdraw LP tokens and

rewards, update the pool information, and transfer the designated LP tokens and lava to the user address.

(Note that if the lava token balance in the contract is less than the reward value, only Remaining the lava

tokens in the contract will be sent to the user address)



Figure 6 source code of withdraw function

Figure 7 source code of safeLavaTransfer function

 Related functions: updatePool, safeLavaTransfer, safeTransfer, transfer, balanceOf, withdraw

 Result: Pass

3.6 updatePool function

 Description: As shown in the figure below, the contract implements the updatePool function to

update the lava reward and pool information of the current block pool. Any user can call this function to

update the pool’s latest lava reward and information.(block.number must be greater than

lastRewardBlock to call)



Figure 8 source code of updatePool function

 Related functions: updatePool, balanceOf, getMultiplier

 Result: Pass

3.7 massUpdatePools function

 Description: The contract implements the massUpdatePools function to update all pools, first by

obtaining the length of the pool, and then calling the function updatePool to update the pool in turn.

Figure 9 source code of massUpdatePools function

 Related functions: massUpdatePools, updatePool

 Result: Pass



4. Conclusion

Beosin(ChengduLianAn) conducted a detailed audit on the design and code implementation of the smart

contracts LAVASWAP. The contracts LAVASWAP passed all audit items, The overall audit result is Pass.



Official Website

https://lianantech.com

E-mail

vaas@lianantech.com

Twitter

https://twitter.com/Beosin_com

http://lianantech.com

