BEOSIN

Blockchain Security

Smart contract security
audit report

Audit Number: 202109061830

Report Inquiry Name: LAVASWAP

Smart Contract Name:

MasterChef

Smart Contract Address:

3JBEOSIN

0x155291E78823C53CA6995d114B5FfaCc42dd6c2c

Smart Contract Address Link:

https://bscscan.com/address/0x155291E78823C53CA6995d114B5FfaCc42dd6c2c#code

Start Date: 2021.08.30

Completion Date: 2021.09.06

Overall Result: Pass

Audit Team: Beosin (Chengdu LianAn) Technology Co. Ltd.

Audit Categories and Results:

No. | Categories Subitems Results

Compiler Version Security Pass
Deprecated Items Pass
Redundant Code Pass
SafeMath Features Pass

1 Coding Conventions
require/assert Usage Pass
Gas Consumption Pass
Visibility Specifiers Pass
Fallback Usage Pass
Integer Overflow/Underflow Pass

2 | General Vulnerability Reentrancy Pass
Pseudo-random Number Generator Pass
(PRNG)

3JBEOSIN

Transaction-Ordering Dependence Pass
DoS (Denial of Service) Pass
Access Control of Owner Pass
Low-level Function (call/delegatecall)

: Pass
Security
Returned Value Security Pass
tx.origin Usage Pass
Replay Attack Pass
Overriding Variables Pass
Business Logics Pass

3 | Business Security

Business Implementations Pass

Note: Audit results and suggestions in code comments

Disclaimer: This audit is only applied to the type of auditing specified in this report and the scope of
given in the results table. Other unknown security vulnerabilities are beyond auditing responsibility.
Beosin (Chengdu LianAn) Technology only issues this report based on the attacks or vulnerabilities
that already existed or occurred before the issuance of this report. For the emergence of new attacks
or vulnerabilities that exist or occur in the future, Beosin (Chengdu LianAn) Technology lacks the
capability to judge its possible impact on the security status of smart contracts, thus taking no
responsibility for them. The security audit analysis and other contents of this report are based solely
on the documents and materials that the contract provider has provided to Beosin (Chengdu LianAn)
Technology before the issuance of this report, and the contract provider warrants that there are no
missing, tampered, deleted; if the documents and materials provided by the contract provider are
missing, tampered, deleted, concealed or reflected in a situation that is inconsistent with the actual
situation, or if the documents and materials provided are changed after the issuance of this report,
Beosin (Chengdu LianAn) Technology assumes no responsibility for the resulting loss or adverse
effects. The audit report issued by Beosin (Chengdu LianAn) Technology is based on the documents
and materials provided by the contract provider, and relies on the technology currently possessed by
Beosin (Chengdu LianAn). Due to the technical limitations of any organization, this report
conducted by Beosin (Chengdu LianAn) still has the possibility that the entire risk cannot be
completely detected. Beosin (Chengdu LianAn) disclaims any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin (Chengdu LianAn).

Audit Results Explained:

Beosin (Chengdu LianAn) Technology has used several methods including Formal Verification, Static
Analysis, Typical Case Testing and Manual Review to audit three major aspects of smart contracts
LAVASWAP projects, including Coding Standards, Security, and Business Logic. The LAVASWAP
contracts projects passed all audit items. The overall result is Pass. The smart contract is able to

function properly.

3JBEOSIN

Check the code style that does not conform to Solidity code style.

1. Coding Conventions

1.1 Compiler Version Security

® Description: Check whether the code implementation of current contract contains the exposed
solidity compiler bug.
® Result: Pass

1.2 Deprecated Items

® Description: Check whether the current contract has the deprecated items.
® Result: Pass
1.3 Redundant Code

® Description: Check whether the contract code has redundant codes.
® Result: Pass
1.4 SafeMath Features

® Description: Check whether the SafeMath has been used. Or prevents the integer overflow/underflow
in mathematical operation.
® Result: Pass
1.5 require/assert Usage
® Description: Check the use reasonability of 'require’ and 'assert' in the contract.
® Result: Pass
1.6 Gas Consumption
® Description: Check whether the gas consumption exceeds the block gas limitation.
® Result: Pass
1.7 Visibility Specifiers
® Description: Check whether the visibility conforms to design requirement.
® Result: Pass
1.8 Fallback Usage
® Description: Check whether the Fallback function has been used correctly in the current contract.

® Result: Pass

2. General Vulnerability
Check whether the general vulnerabilities exist in the contract.
2.1 Integer Overflow/Underflow

® Description: Check whether there is an integer overflow/underflow in the contract and the calculation
result is abnormal.

® Result: Pass

3JBEOSIN

® Description: An issue when code can call back into your contract and change state, such as
withdrawing BNB.
® Result: Pass

2.3 Pseudo-random Number Generator (PRNG)

2.2 Reentrancy

® Description: Whether the results of random numbers can be predicted.
® Result: Pass

2.4 Transaction-Ordering Dependence

® Description: Whether the final state of the contract depends on the order of the transactions.
® Result: Pass

2.5 DoS (Denial of Service)

® Description: Whether exist DoS attack in the contract which is vulnerable because of unexpected
reason.
® Result: Pass

2.6 Access Control of Owner
® Description: Whether the owner has excessive permissions, such as malicious issue, modifying the
balance of others.
® Result: Pass

2.7 Low-level Function (call/delegatecall) Security
® Description: Check whether the usage of low-level functions like call/delegatecall have
vulnerabilities.
® Result: Pass

2.8 Returned Value Security

® Description: Check whether the function checks the return value and responds to it accordingly.
® Result: Pass

2.9 tx.origin Usage

® Description: Check the use secure risk of 'tx.origin' in the contract. In this project, the contract.
® Result: Pass
2.10 Replay Attack

® Description: Check whether the implement possibility of Replay Attack exists in the contract.
® Result: Pass

2.11 Overriding Variables

® Description: Check whether the variables have been overridden and lead to wrong code execution.
® Result: Pass

3. Business Security

3JBEOSIN

® Description: As shown in the figure below, the contract implements the add function to add a pool,

3.1 add function

and the contract owner can call this function to add a pool for users to LP and obtain rewards. When
calling add to add a pool, lastRewardBlock and totalAllocPoint will be updated, and pool related

information will be stored. Please do not add the same LP tokens, this will cause the reward to be messed.

fu 1 add(uint _allocPoint, TI '8 _1pToken, bool _withUpdate) public

onlyOwner {
it (_withUpdate) {

massUpdatePools();

1
J
uint256 lastRewardBlock = block.number » startBlock ? block.number :

startBlock;

totalAllocPoint = totalAllocPoint.add(allocPoint);
poolInfo.push(PoolInfo({
1pToken: 1pToken,
allocPoint: _allocPoint,
lastRewardBlock: lastRewardBlock,
accSushiPerShare: @

1)

Figure 1 source code of add function
® Related functions: massUpdatePools, add

® Audit Recommendations: The MasterChef type stake pool was designed at a time when there were no
deflationary tokens, so the developers did not consider the impact that such tokens could have. Some
project owners used the old MasterChef tokens and added deflationary tokens or rewards as stake tokens
when developing the code, which led to various malicious attacks or anomalies. As of now, there are two
types of problems with the MasterChef type stake pool: first, there is no special handling of inflation-
deflation tokens, and the actual number of tokens transferred to the contract is not checked to be the
same as the number filled in when the function is called; second, reward tokens are added as stake tokens,
resulting in anomalies in the reward calculation. The root cause of both types of problems still lies in the
fact that the balanceOf function is used to obtain the amount of stake when calculating the reward. It is
recommended that the project owner use a separate variable as the record of stake quantity when
developing the code of MasterChef type stake pool, and then use this variable to get the stake token
quantity when calculating the reward, instead of using the balanceOf function.

® Result: Pass

3.2 set function

® Description: As shown in the figure below, the contract implements the set function to set the reward
distribution ratio of the pool. The contract owner can call this function to set the reward distribution ratio
of the pool. The modification of the pool reward distribution ratio will affect the lava reward when the

user withdraws the LP tokens.

3JBEOSIN

n set{uint256 pid, uint256 _allocPoint, 1 withUpdate) public

onlyOwner {
if (_withUpdate) {
massUpdatePools();
1
J
totalAllocPoint = totalAllocPoint.sub(poolInfo[_pid].allocPoint).add
(_allocPoint);

poolInfo[_pid].allocPoint = _allocPoint;

Figure 2 source code of set function
® Related functions: set, massUpdatePools

® Audit Recommendations: It is recommended to use governance contracts to manage owner
permissions.

® Result: Pass

3.3 updateSushiPerBlock function

® Description: As shown in the figure below, the contract implements the wupdateSushiPerBlock

function to set the reward for each block, which can only be called through the owner.

nction updateSushiPerBlock(ui _sushiPerBlock) public onlyOwner{
massUpdatePools();

sushiPerBlock = sushiPerBlock;

Figure 3 source code of updateSushiPerBlock function
® Related functions: updateSushiPerBlock, massUpdatePools

® Result: Pass

3.4 deposit function

® Description: As shown in the figure below, the contract implements the deposit function for users to
deposit LP tokens. The user pre-authorizes the contract address and calls this function to LP tokens.
When the deposit function deposits tokens, if the user's balance stored in the pool is greater than zero,
the reward will be calculated and sent to the user's address. (Note that if the lava token balance in the
contract is less than the reward value, only remaining the lava tokens in the contract will be sent to the
user address) At the same time, the LP token will be sent to the pool, And the user's amount and

rewardDebt will be updated.

3JBEOSIN

deposit(uint256 pid, uin 6 _amount)
PoolInfo stor pool = poolInfo[pid];
UserInfo stc user = userInfo[pid][msg.sender
updatePool(pid);
if (user.amount > ©) {

6 pending = user.amount.mul(pool.accSushiPerShare).div(1le12).
sub{user. rewardDebt);
satelavaTransfer{msg.sender, pending);
}
_amount);
user.amount = user.amount.add{ amount);
user.rewardDebt = user.amount.mul(pool.accSushiPerShare).div(1e12);
mit Deposit(msg.sender, pid, amount);

Figure 4 source code of deposit function

safelavaTransfer(_ int256 amount)
udr » lavaBal = lava.balanceOf((this));
if (_amount > lavaBal) {

lava.transfer{ to, lavaBal);
r

} else {
lava.transfer(to, amount};

Figure 5 source code of safeLavaTransfer function
® Related functions: deposit, safeLavaTransfer, updatePool, safeTransferFrom, transfer, balanceOf

® Result: Pass

3.5 withdraw function

® Description: As shown in the figure below, the contract implements the withdraw function for users
to withdraw LP tokens and lava rewards. Users can call this function to withdraw a specified number of
LP tokens and lava rewards from the specified pool (requires the specified pool to exist and the number
of LP tokens is greater than or equal to Withdrawal quantity). When users withdraw LP tokens and
rewards, update the pool information, and transfer the designated LP tokens and lava to the user address.
(Note that if the lava token balance in the contract is less than the reward value, only Remaining the lava

tokens in the contract will be sent to the user address)

BEOSIN

Blockchain Security

withdraw{uir y _pid, -.li: 5 _amount) publ
PoolInfo storage pool = poolInfo[pid];
UserInfo storage user = userInfo[pld][
require({user.amount >= _amount,
updatePool(pid);
uin pending = user.amount.mul({pool.accSushiPerShare).div(1el2).sub
Iu5EP PFwanDEbtb.
cafelavaTranster({msg.sender, pending);
user.amount = user. amnunf sub(amount};
user.rewardDebt = user.amount.mul(pool.accSushiPerShare).div(1le12);
pool.lpToken.safeTranster(: ender), _amount});
emit Withdraw(msg.sende

1 safelLavaTransfer(add _to
lavaBal = lava.balanceOf(
if (_amount > lavaBal) {
lava.transfer(to, lavaBal);

lava.transfer(_to, amount);

Figure 7 source code of safeLavaTransfer function
® Related functions: updatePool, safeLavaTransfer, safeTransfer, transfer, balanceOf, withdraw
® Result: Pass

3.6 updatePool function

® Description: As shown in the figure below, the contract implements the updatePool function to
update the lava reward and pool information of the current block pool. Any user can call this function to
update the pool’s latest lava reward and information.(block.number must be greater than

lastRewardBlock to call)

BEOSIN

Blockchain Security

1 updatePool (ui _pid) ;J"z: {
PoolInfo storage pool = poollInfo[_pid];
ck.number <= pool.lastRewardBlock) {

’ 1pSupply = pool.lpToken.balanceCOf
if (1pSupply == @) {
pool.lastRewardBlock = block.number;

return:

multiplier = getMultiplier(pool.lastRewardBlock, block.number);
L sushiReward = multiplier.mul(sushiPerBlock).mul{pool.allocPoint)
.div({totalAllocPoint);
pool.accSushiPerShare = pool.accSushiPerShare.add(sushiReward.mul({lel2).
div{1pSupply));
pool.lastRewardBlock = block.number;

Figure 8 source code of updatePool function
® Related functions: updatePool, balanceOf, getMultiplier

® Result: Pass

3.7 massUpdatePools function

® Description: The contract implements the massUpdatePools function to update all pools, first by

obtaining the length of the pool, and then calling the function updatePool to update the pool in turn.

1 massUpdatePools() public {
5 length = poolInfo.length;

pid = @; pid < length; ++pid) {
updatePool(pid);

Figure 9 source code of massUpdatePools function
® Related functions: massUpdatePools, updatePool

® Result: Pass

3JBEOSIN

Beosin(ChengduLianAn) conducted a detailed audit on the design and code implementation of the smart

contracts LAVASWAP. The contracts LAVASWAP passed all audit items, The overall audit result is Pass.

4. Conclusion

ol

Beosin

BEOSIN

Blockchain Security

Official Website
https://lianantech.com
E-mail
vaas@lianantech.com
Twitter

https://twitter.com/Beosin_com

http://lianantech.com

