

Smart contract security

audit report

Audit Number：202106281912

Name of report inquiry：LavaSwap

Smart Contract Info：

Smart Contract Name Smart Contract Address Smart Contract Address Link

LAVASwapFactory
0x1FAcA40c88a4bd1E174

C9360295e1cb0f37Fd4FA

https://bscscan.com/address/0x1FAcA40

c88a4bd1E174C9360295e1cb0f37Fd4F

A#code

LAVASwapRouter
0x6E20a29b8a011905f654d

8C52E141976e77f3365

https://bscscan.com/address/0x6E20a29b

8a011905f654d8C52E141976e77f3365#

code

Start Date：2021.06.24

Completion Date：2021.06.28

Overall Result：Pass

Audit Team: Beosin (Chengdu LianAn) Technology Co. Ltd.

Audit Categories and Results:

No. Categories Subitems Results

1 Coding Conventions

Compiler Version Security Pass

Deprecated Items Pass

Redundant Code Pass

SafeMath Features Pass

require/assert Usage Pass

Gas Consumption Pass

Visibility Specifiers Pass

Fallback Usage Pass

2 General Vulnerability

Integer Overflow/Underflow Pass

Reentrancy Pass

Pseudo-random Number Generator

(PRNG)
Pass

Transaction-Ordering Dependence Pass

DoS (Denial of Service) Pass

Access Control of Owner Pass

Low-level Function (call/delegatecall)

Security
Pass

Returned Value Security Pass

tx.origin Usage Pass

Replay Attack Pass

Overriding Variables Pass

3 Business Security
Business Logics Pass

Business Implementations Pass

Disclaimer: This report is made in response to the project code. No description, expression or wording in this

report shall be construed as an endorsement, affirmation or confirmation of the project.This audit is only

applied to the type of auditing specified in this report and the scope of given in the results table. Other unknown

security vulnerabilities are beyond auditing responsibility. Beosin (Chengdu LianAn) Technology only issues

this report based on the attacks or vulnerabilities that already existed or occurred before the issuance of this

report. For the emergence of new attacks or vulnerabilities that exist or occur in the future, Beosin (Chengdu

LianAn) Technology lacks the capability to judge its possible impact on the security status of smart contracts,

thus taking no responsibility for them. The security audit analysis and other contents of this report are based

solely on the documents and materials that the contract provider has provided to Beosin (Chengdu LianAn)

Technology before the issuance of this report, and the contract provider warrants that there are no missing,

tampered, deleted; if the documents and materials provided by the contract provider are missing, tampered,

deleted, concealed or reflected in a situation that is inconsistent with the actual situation, or if the documents

and materials provided are changed after the issuance of this report, Beosin (Chengdu LianAn) Technology

assumes no responsibility for the resulting loss or adverse effects. The audit report issued by Beosin (Chengdu

LianAn) Technology is based on the documents and materials provided by the contract provider, and relies

on the technology currently possessed by Beosin (Chengdu LianAn). Due to the technical limitations of any

organization, this report conducted by Beosin (Chengdu LianAn) still has the possibility that the entire risk

cannot be completely detected. Beosin (Chengdu LianAn) disclaims any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin (Chengdu LianAn).

Audit Results Explained:

Beosin (Chengdu LianAn) Technology has used several methods including Formal Verification, Static

Analysis, Typical Case Testing and Manual Review to audit three major aspects of project LavaSwap,

including Coding Standards, Security, and Business Logic. The LavaSwap project passed all audit items.

The overall result is Pass. The smart contract is able to function properly.

1. Coding Conventions

Check the code style that does not conform to Solidity code style.

1.1 Compiler Version Security

⚫ Description: Check whether the code implementation of current contract contains the exposed solidity

compiler bug.

⚫ Result: Pass

1.2 Deprecated Items

⚫ Description: Check whether the current contract has the deprecated items.

⚫ Result: Pass

1.3 Redundant Code

⚫ Description: Check whether the contract code has redundant codes.

⚫ Result: Pass

1.4 SafeMath Features

⚫ Description: Check whether the SafeMath has been used. Or prevents the integer overflow/underflow

in mathematical operation.

⚫ Result: Pass

1.5 require/assert Usage

⚫ Description: Check the use reasonability of 'require' and 'assert' in the contract.

⚫ Result: Pass

1.6 Gas Consumption

⚫ Description: Check whether the gas consumption exceeds the block gas limitation.

⚫ Result: Pass

1.7 Visibility Specifiers

⚫ Description: Check whether the visibility conforms to design requirement.

⚫ Result: Pass

1.8 Fallback Usage

⚫ Description: Check whether the Fallback function has been used correctly in the current contract.

⚫ Result: Pass

2. General Vulnerability

Check whether the general vulnerabilities exist in the contract.

2.1 Integer Overflow/Underflow

⚫ Description: Check whether there is an integer overflow/underflow in the contract and the calculation

result is abnormal.

⚫ Result: Pass

2.2 Reentrancy

⚫ Description: An issue when code can call back into your contract and change state, such as

withdrawing BNB.

⚫ Result: Pass

2.3 Pseudo-random Number Generator (PRNG)

⚫ Description: Whether the results of random numbers can be predicted.

⚫ Result: Pass

2.4 Transaction-Ordering Dependence

⚫ Description: Whether the final state of the contract depends on the order of the transactions.

⚫ Result: Pass

2.5 DoS (Denial of Service)

⚫ Description: Whether exist DoS attack in the contract which is vulnerable because of unexpected

reason.

⚫ Result: Pass

2.6 Access Control of Owner

⚫ Description: Whether the owner has excessive permissions, such as malicious issue, modifying the

balance of others.

⚫ Result: Pass

2.7 Low-level Function (call/delegatecall) Security

⚫ Description: Check whether the usage of low-level functions like call/delegatecall have vulnerabilities.

⚫ Result: Pass

2.8 Returned Value Security

⚫ Description: Check whether the function checks the return value and responds to it accordingly.

⚫ Result: Pass

2.9 tx.origin Usage

⚫ Description: Check the use secure risk of 'tx.origin' in the contract.

⚫ Result: Pass

2.10 Replay Attack

⚫ Description: Check whether the implement possibility of Replay Attack exists in the contract.

⚫ Result: Pass

2.11 Overriding Variables

⚫ Description: Check whether the variables have been overridden and lead to wrong code execution.

⚫ Result: Pass

3. Business Security

3.1 Business analysis of Contract LAVASwapERC20

(1) Basic Token Information

Token name LAVASwap LPs

Token symbol LAVASwap-LP

decimals 18

totalSupply Mintable without cap, burnable

Token type BEP-20

Table 2 Basic Token Information

(2) BEP-20 Token Standard Functions

⚫ Description: The token contract implements a token which conforms to the BEP-20 Standards. It

should be noted that the user can directly call the approve function to set the approval value for the

specified address, but in order to avoid multiple authorizations, it is recommended to reset the

authorization value to 0 before making a new authorization.

⚫ Related functions: name, symbol, decimals, totalSupply, balanceOf, allowance, transfer,

transferFrom, approve

⚫ Result: Pass

(3) Permit function

⚫ Description: The Permit function is used to sign messages offline for approve operations.

Figure 1 Source code of permit

⚫ Related functions: permit

⚫ Result: Pass

3.2 Business analysis of Contract LAVASwapFactory

(1) CreatePair function

⚫ Description: The contract implements that createPair is used to create a transaction pair. Users can

call this function to create a new transaction pair (requires that the transaction pair of the current two

tokens does not exist, and the addresses of the two tokens passed are different and not zero) and create a

contract of the transaction pair. Call the initialize of the created pair contract to initialize the addresses of

the two tokens and update the allPairs information.

Figure 2 Source code of createPair

⚫ Related functions: createPair, initialize

⚫ Result: Pass

(2) SetFeeTo function

⚫ Description: The contract implements setFeeTo to change the fee collection address, requiring the

caller to be feeToSetter.

Figure 3 Source code of setFeeTo

⚫ Related functions: setFeeTo

⚫ Result: Pass

(3) SetFeeToSetter function

⚫ Description: The contract implements setFeeToSetter to change the feeToSetter address, requiring the

caller to be feeToSetter.

Figure 4 Source code of setFeeToSetter

⚫ Related functions: setFeeToSetter

⚫ Result: Pass

3.3 Business analysis of Contract LAVASwapPair

(1) Burn function

⚫ Description: As shown in the figure below, the contract implements the burn function for the user to

remove liquidity from this pair. If a feeTo address is set, the _mintFee function will be called to send a

fee to the feeTo address (where the default setting is 1/3 to the liquidity provider and 2/3 to the feeTo

address); then the number of lp tokens held by the contract will be destroyed and the two tokens

corresponding to the pair will be sent to the specified address; finally, the funding information of the pair

tokens will be updated to complete the removal of liquidity operation.

Figure 5 Source code of burn

⚫ Related functions: burn, getReserves, balanceOf, _mintFee, _update, _burn

⚫ Result: Pass

(2) Initialize function

⚫ Description: The contract implements the initialize function to initialize the pair token information of

the contract, Factory contract only called initialize of pair contract once.

Figure 6 Source code of initialize

⚫ Related functions: initialize

⚫ Result: Pass

(3) Mint function

⚫ Description: As shown in the figure below, the mint function in the contract is used to add liquidity to the

user of the specified pair and send the corresponding amount of lp tokens to the user's address. If the

feeTo address is set, the _mintFee function will be called to send a fee to the feeTo address (here the

default setting is 2/3 to the liquidity provider and 1/3 to the feeTo address); if it is the first time liquidity

is provided, some of the initial liquidity will be burned off. Finally, the funding information of the pair is

updated to complete the operation of increasing liquidity.

Figure 7 Source code of mint

⚫ Related functions: mint, getReserves, balanceOf, _mintFee, _update, _mint

⚫ Result: Pass

(4) Skim function

⚫ Description: The contract implements the skim function to limit the agreement between the actual

balance of the two tokens in the contract and the number of assets in the saved constant product (the

excess is sent to the caller). Any user can call this function to get additional assets (provided that there

are excess assets).

Figure 8 Source code of skim

⚫ Related functions: skim

⚫ Result: Pass

(5) Swap function

⚫ Description: The contract implements the swap function for the user to exchange one token for another

from the specified trading pair, calculates the exchange ratio of the two tokens according to the constant

K value, and calls the _update function to update the number of the two tokens in the transaction pair.

Figure 9 Source code of swap

⚫ Related functions: swap, getReserve

⚫ Result: Pass

(6) Sync function

⚫ Description: The contract implements the sync function to update the actual balance and k value of

the two tokens in the transaction pair and to deal with some special cases. Any user can call this function

to update the actual balance of the two tokens in the transaction pair. Usually, the token balance and the

k value in the transaction pair correspond to each other.

Figure 10 Source code of sync

⚫ Related functions: sync

⚫ Result: Pass

(7) Related query function

⚫ Description: The contract implements the getReserves function to query the reserve and timestamp of

the pair.

Figure 11 Source code of getReserves

⚫ Related functions: getReserves

⚫ Result: Pass

3.4 Business analysis of Contract LAVASwapPair

(1) Add liquidity functions

⚫ Description: The contract implements the addLiquidity function and the addLiquidityETH function to

add liquidity. The implementation and function of the two functions are similar. Both are obtained by

calling the internal function _addLiquidity to stake pair tokens to the pair contract and obtain lp tokens.

The difference is that one of the tokens of the liquidity added in the addLiquidityETH function is the

token of the specified WETH address.

Figure 12 Source code of addLiquidity and addLiquidityETH

⚫ Related functions: addLiquidity, addLiquidityETH

⚫ Result: Pass

(2) Remove liquidity functions

⚫ Description: The contract implements the six functions of removeLiquidity, removeLiquidityETH,

removeLiquidityWithPermit,removeLiquidityETHWithPermit,removeLiquidityETHSupportingFeeOnTr

ansferTokens, removeLiquidityETHWithPermitSupportingFeeOnTransferTokens to remove the added

liquidity. The last five functions are all implemented to remove liquidity by calling removeLiquidity. The

difference is that removeLiquidityETH is the removed WETH-related liquidity, and

removeLiquidityETHSupportingFeeOnTransferTokens is the removed WETH-related liquidity while

supporting fee-on-transfer. When have a signature authorization, can remove the liquidity through the

removeLiquidityWithPermit,removeLiquidityETHWithPermit,removeLiquidityETHWithPermitSupporti

ngFeeOnTransferTokens function proxy.

Figure 13 Source code of removeLiquidity

Figure 14 Source code of removeLiquidityETH

Figure 15 Source code of removeLiquidityWithPermit

Figure 16 Source code of removeLiquidityETHWithPermit

Figure 17 Source code of removeLiquidityETHSupportingFeeOnTransferTokens

Figure 18 Source code of removeLiquidityETHWithPermitSupportingFeeOnTransferTokens

⚫ Related functions: removeLiquidity, removeLiquidityETH, removeLiquidityWithPermit,

removeLiquidityETHWithPermit, removeLiquidityETHSupportingFeeOnTransferTokens,

removeLiquidityETHWithPermitSupportingFeeOnTransferTokens, permit

⚫ Result: Pass

(3) Swap token functions

⚫ Description: The contract implements the token swap function through the following nine functions:

swapExactTokensForTokens, exchange token0 with token1, enter the token for exchange and the

minimum expected token value, find the path, call the internal function _swap to exchange along the path.

swapTokensForExactTokens, exchange token0 with token1, enter the number of tokens to obtain and the

maximum value of tokens to pay, find the path, call the internal function _swap to exchange along the

path.

swapExactETHForTokens, exchange token0 with the token1 of the WETH address, enter the WETH for

exchange and the minimum expected token value, find the path, and call the internal function _swap to

exchange along the path.

swapTokensForExactETH, exchange token0 for the WETH address, enter the expected amount of WETH

and the maximum amount of tokens to pay, find the path, call the internal function _swap to exchange

along the path.

swapExactTokensForETH, exchange token0 for WETH address tokens, enter the desired minimum

amount of WETH and the number of tokens paid, find the path, call the internal function _swap to

exchange along the path.

swapETHForExactTokens, exchange token0 with tokens of WETH address, enter the expected amount

of tokens and the maximum amount of WETH to pay, find the path, call the internal function _swap to

exchange along the path.

swapExactTokensForTokensSupportingFeeOnTransferTokens, exchange token0 with token1, call the

_swapSupportingFeeOnTransferTokens internal function, and add support for fee-on-transfer based on

the swapExactTokensForTokens function.

swapExactETHForTokensSupportingFeeOnTransferTokens, exchange token with WETH, call the

_swapSupportingFeeOnTransferTokens internal function, and add support for fee-on-transfer based on

the swapExactETHForTokens function.

swapExactTokensForETHSupportingFeeOnTransferTokens, exchange token for WETH, call the internal

function _swapSupportingFeeOnTransferTokens, and add support for fee-on-transfer based on the

swapExactTokensForETH function. When calling the internal function _swap, if pairAddress is a pool

address, the playerManager contract will be called to add an account to the function caller.

Figure 19 Source code of _swap

Figure 20 Source code of swapExactTokensForTokens

Figure 21 Source code of swapTokensForExactTokens

Figure 22 Source code of swapExactETHForTokens

Figure 23 Source code of swapTokensForExactETH

Figure 24 Source code of swapExactTokensForETH

Figure 25 Source code of swapETHForExactTokens

Figure 26 Source code of swapExactTokensForTokensSupportingFeeOnTransferTokens

Figure 27 Source code of swapExactETHForTokensSupportingFeeOnTransferTokens

Figure 28 Source code of swapExactTokensForETHSupportingFeeOnTransferTokens

⚫ Related functions: swapExactTokensForTokens, swapTokensForExactTokens,

swapExactETHForTokens, swapTokensForExactETH, swapExactTokensForETH,

swapETHForExactTokens, swapExactTokensForTokensSupportingFeeOnTransferTokens,

swapExactETHForTokensSupportingFeeOnTransferTokens,

swapExactTokensForETHSupportingFeeOnTransferTokens, getReserves, getAmountOut

⚫ Result: Pass

(4) Other related functions

⚫ Description: The contract implements the quote function to calculate the value of amountB

corresponding to amountA. getAmountOut function to calculate the amountOut based on the amountIn.

getAmountIn function to calculate the amountIn based on the amountOut. getAmountsOut function to

calculate the amountOut of the specified exchange path based on the amountIn. getAmountsIn function

to calculate the amountIn of the specified exchange path based on the amountOut.

Figure 29 Source code of quote

Figure 30 Source code of getAmountOut and getAmountIn

Figure 31 Source code of getAmountsOut and getAmountsIn

⚫ Related functions: quote, getAmountOut, getAmountIn, getAmountsIn, getAmountsOut

⚫ Result: Pass

4. Conclusion

Beosin(Chengdu LianAn) conducted a detailed audit on the design and code implementation of the smart

contracts project LavaSwap, the overall audit result of the smart contracts project LavaSwap is Pass.

Official Website

https://lianantech.com

E-mail

vaas@lianantech.com

Twitter

https://twitter.com/Beosin_com

http://lianantech.com/

